Multiscale Fuzzy C-Means Image Classification for Multiple Weighted MR Images for the Assessment of Photodynamic Therapy in Mice.

نویسندگان

  • Hesheng Wang
  • Denise Feyes
  • John Mulvihill
  • Nancy Oleinick
  • Gregory Maclennan
  • Baowei Fei
چکیده

We are investigating in vivo small animal imaging and analysis methods for the assessment of photodynamic therapy (PDT), an emerging therapeutic modality for cancer treatment. Multiple weighted MR images were acquired from tumor-bearing mice pre- and post-PDT and 24-hour after PDT. We developed an automatic image classification method to differentiate live, necrotic and intermediate tissues within the treated tumor on the MR images. We used a multiscale diffusion filter to process the MR images before classification. A multiscale fuzzy C-means (FCM) classification method was applied along the scales. The object function of the standard FCM was modified to allow multiscale classification processing where the result from a coarse scale is used to supervise the classification in the next scale. The multiscale fuzzy C-means (MFCM) method takes noise levels and partial volume effects into the classification processing. The method was validated by simulated MR images with various noise levels. For simulated data, the classification method achieved 96.0 ± 1.1% overlap ratio. For real mouse MR images, the classification results of the treated tumors were validated by histologic images. The overlap ratios were 85.6 ± 5.1%, 82.4 ± 7.8% and 80.5 ± 10.2% for the live, necrotic, and intermediate tissues, respectively. The MR imaging and the MFCM classification methods may provide a useful tool for the assessment of the tumor response to photodynamic therapy in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions

Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...

متن کامل

Two New Methods of Boundary Correction for Classifying Textural Images

With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 6512  شماره 

صفحات  -

تاریخ انتشار 2007